Proteomic identification of nitrated brain proteins in traumatic brain-injured rats treated postinjury with gamma-glutamylcysteine ethyl ester: insights into the role of elevation of glutathione as a potential therapeutic strategy for traumatic brain injury.
نویسندگان
چکیده
Traumatic brain injury (TBI) occurs suddenly and has damaging effects to the brain that are dependent on the severity of insult. Symptoms can be mild, moderate, or severe. Oxidative damage is associated with traumatic brain injury through reactive oxygen/nitrogen species production. One such species, peroxynitrite, is elevated in TBI brain tissue (Orihara et al. [2001] Forensic Sci. Int. 123:142-149; Deng et al. [2007] Exp. Neurol. 205:154-165). Peroxynitrite can react with carbon dioxide and decompose to produce NO(2) and carbonate radicals, which in turn can lead to 3-nitrotyrosine, an index of protein nitration. Gamma-glutamylcysteine ethyl ester (GCEE) is an ethyl ester moiety of gamma-glutamylcysteine, an agent that up-regulates glutathione (GSH) production in brain (Drake et al. [2002] J. Neurosci. Res. 68:776-784). Many preclinical studies of TBI have employed pretreatment of animals with proposed beneficial agents prior to the injury itself. However, in the real world of TBI, treatment begins postinjury. Hence, insights into agents that improve outcome following injury are desperately needed. This study is one of the first to investigate a potential GSH-based therapy for TBI postinjury. Protein carbonyls, an index of protein oxidation, were significantly elevated in brain of animals subjected to TBI. However, if, after TBI, GCEE was administered i.p., protein carbonyl levels were significantly reduced. Similarly, 3-nitrotyrosine levels were elevated in brain following TBI but significantly decreased following TBI if GCEE was administered i.p. Redox proteomics analysis showed that several brain proteins were nitrated after TBI. However, if GCEE was given i.p. following TBI, many of these proteins were protected from nitration. The results are encouraging and are discussed with reference to potential therapeutic strategies for TBI involving elevated GSH.
منابع مشابه
Mobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat
Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF) administration in rats for 6 weeks after traumatic brain injury (TBI). Methods: Adult male Wistar rats (n = 30) were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each) were injected subcutaneously with recombinant human...
متن کاملP108: Microglia in Traumatic Brain Injury
Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...
متن کاملThe Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat
Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...
متن کاملP80: The Effects of Progesterone Receptors\' Antagonist RU-486 on BrainEdema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury
In previous studies, the neuroprotective effect of progestrone in diffuse traumatic brain injury has been shown. This study used mifepristone (RU-486), a potent progesterone receptor antagonist, to evaluatethe hypothesis that the neuroprotective effect of progesterone in traumatic brain injury is mediated by the progesterone receptors. The ovariectomized rats were divided into 6 groups. Brain i...
متن کاملMelatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury
Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience research
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2009